Гидравлический удар в трубопроводах
Что такое гидроудар в трубопроводе – причины и следствия
О таком термине, как «гидроудар» в трубопроводе слышали многие, однако, не каждый знает определенно, что это такое. Настоящая статья расскажет о том, что такое гидравлический удар в трубопроводах, по каким причинам он может возникать, и каковы последствия данного явления для всей системы водоснабжения.
Под гидравлическим ударом в трубах понимают явление, при котором жидкость внутри них внезапно останавливается и провоцирует резкий подъем давления в системе, сопровождающийся громким звуком, напоминающим удар. Хотя это и краткосрочное событие, однако, последствия у него могут быть весьма плачевными, особенно, если это старые трубы, у которых срок эксплуатации на исходе.
Возможные причины возникновения
Существует несколько основных причин гидроудара в трубопроводе:
- В процессе заполнения системы водой, находящийся в ней воздух обычно спускают через открытый вентиль. Если сечение вентиля меньше, чем у основной трубы, его пропускная способность не позволяет справиться сразу со всем потоком воды. В таком случае создается повышенное давление в месте задержки, и возникает гидроудар.
- В системах, где вода циркулирует с постоянным давлением, при некоторых обстоятельствах могут перекрывать запорные устройства. Тогда несжимаемая до этого жидкость начинает оказывать повышенное давление на стенки трубы, вследствие чего происходит гидроудар.
Различают два типа гидроудара в трубопроводе: отрицательный – происходит снижение напора из-за выключения насоса или открытия задвижки; положительный – давление в системе резко поднимается в результате перекрытия задвижек или включения подкачки.
Стоит отметить, что наиболее опасным для безопасной эксплуатации системы отопления и водоснабжения является положительный гидравлический удар в трубопроводах. Из-за резкого подъема давления, запорные арматурные элементы, со временем, теряют свою непроницаемость, на них могут образовываться трещины, расколы, так что может пострадать вся система в целом.
Для того чтобы рассчитать мощность гидроудара в трубах, теоретиком Н. Е. Жуковским был разработан целый ряд формул. Он не только подробно расписал, что такое гидроудар в трубопроводе, но и определил, как можно вычислить степень роста давления в системе в той или иной ситуации.
Какие последствия гидроудара могут быть для системы отопления
Довольно часто после запуска системы отопления с приходом холодов в трубах можно услышать периодические щелчки и стук. Обратите внимание, что если подобные явления возникают слишком часто, это может привести к необходимости проведения срочного ремонта системы отопления. Связана такая необходимость может быть с тем, что гидроудар в трубах иногда приводит к прорыву теплоносителя, неисправности отопительного оборудования или повреждениям расширительного бачка.
Поскольку самостоятельно определить возможные результаты воздействия ударной волны на систему довольно сложно, обычно для этих целей приглашают специалистов, чьи услуги стоят достаточно дорого. Поэтому настоятельно рекомендуем перед началом отопительного сезона провести диагностику отопительного контура и выявить все возможные недостатки.
Наиболее распространенной причиной гидроударов в отопительном контуре является различное сечение используемых труб. Поскольку на участке трубопровода с меньшим диаметром создается постоянное повышенное трение, оно мешает теплоносителю свободно двигаться по системе. Следовательно, в трубах постоянно слышится гудение, шипение или щелчки из-за повышенного давления.
Если в вашей системе отопления присутствует такая проблема, ее придется переделывать. В противном случае, по прошествии времени неприятности с ней возникнут снова.
Способы предотвращения гидроударов
Сразу после проведения установки или капитального ремонта системы отопления следует позаботиться о недопущении гидроударов. Добиться этого можно с помощью корректной настройки работы контура. Если все сделать правильно, вы минимизируете последствия ошибок монтажа или планировки всей системы.
Если вы планируете провести обновление и усовершенствование отопления в доме, для этих целей стоит выбирать прочные и износостойкие комплектующие и расходные материалы. При этом нужно обращать внимание на эксплуатационные характеристики деталей.
Чтобы не допустить резкого роста давления в трубах, следует дополнить отопительный контур компенсаторными устройствами – гидроаккумуляторами. Они поглощают излишний объем воды, предотвращая образование пробок и гидроударов.
Кроме того, удобным устройством, контролирующим уровень давления внутри системы, является электрический насос. Он позволяет подавать воду в трубопровод постепенно, регулируя напор в случае малейших колебаний давления.
Итак, мы рассказали об основных причинах и последствиях гидравлических ударов в трубопроводах. Надеемся, что данная информация позволит вам избежать возможных проблем и материальных затрат.
Гидроудар в трубопроводе: основные причины, последствия и способы защиты
Часто ли вы обращаете внимание на всевозможные щелчки, скрежеты, простукивания и прочие посторонние звуки в трубопроводе? Думать, что это всего лишь временные и случайные явления, не таящие в себе ничего опасного, – крайне опрометчиво. На практике любые чужеродные шумы в коммуникационной системе могут свидетельствовать о гидроударе, который, в свою очередь, нередко влечет за собой целый ряд разрушений инженерной сети. Почему же возникает гидроудар в трубопроводе, каковы его последствия и можно ли его избежать – рассказываем и показываем видео далее.
Основные причины гидроудара
Гидроудар – кратковременный, но сильный и очень резкий перепад давления в трубопроводе. Его возникновение обусловлено внезапным изменением скорости движения воды в коммуникационной системе. В зависимости от характера этого изменения, гидроудар может быть отрицательным – при уменьшении скорости, и положительным – при ее увеличении. Главную опасность для инженерных сетей представляет второй вариант: с молниеносным увеличением скорости и напора рабочей жидкости соответственным образом повышается и ее давление, а это чревато разрывом труб.
Потенциальных причин гидравлического удара несколько:
- резкая активация или деактивация насосного устройства;
- деформация насоса;
- нестравленный воздух в закрытом контуре;
- проблемы с электропитанием, которые препятствуют нормальному функционированию насоса;
- резкое открывание/закрывание арматурных деталей – задвижек, вентилей и всевозможных кранов.
Последняя причина сегодня особенно актуальна, так как старые трубопроводные задвижки начали массово менять на современные быстродействующие шаровые краны. Их потенциальная опасность объясняется следующим образом: если в системе находится определенный объем воздуха, то при резком открывании шарового крана он неизбежно столкнется с почти несжимаемой рабочей жидкостью, что приведет к скачку давления свыше 10 атм. В то же время винтовые краны – предшественники шаровых устройств – обеспечивают плавное открывание арматуры, тем самым исключая вероятность резкого столкновения воздуха и жидкости.
Последствия гидроудара для трубопровода
Повышение давления рабочей жидкости, вызванное гидроударом, может продолжаться почти до бесконечности. В ходе этого непрекращающегося негативного процесса абсолютно все компоненты коммуникационных сетей испытывают серьезные нагрузки, что провоцирует их деформацию. Заранее предугадать точные последствия гидроудара в тех или иных условиях довольно сложно, но чаще всего аварийные ситуации чреваты следующими негативными явлениями:
- разрушение резьбовых соединений труб;
- изменение свойств материала, из которого выполнены трубы;
- нарушение герметичности трубопровода;
- деформация отдельных участков трубопровода – вплоть до их разрыва.
Важно! В особо сложных ситуациях гидроудар может вызвать нарушения функционирования даже крупных отопительных и гидроагрегатов: котла, нагревателя, расширительного бака, насоса.
Все вышеперечисленное может привести не только к временной дисфункции инженерных систем, но и к затоплению жилища с последующей порчей имущества.
Отдельно нужно отметить о последствиях гидроудара для теплых полов, как части длинной трубопроводной системы. Еще на этапе монтажа к ним, как правило, подсоединяют специальный термостатический клапан, который призван защищать «подпольное» оборудование от гидравлических неприятностей. Но здесь важен нюанс: термоклапан спасет только в случае его грамотного монтажа – в иной ситуации устройство создаст дополнительную угрозу возникновения разрушительных процессов в системе.
Способы защиты от гидроудара
Наиболее эффективный вариант защиты от гидроударов – модернизация трубопроводной системы. Здесь вам помогут следующие устройства:
- Компенсатор – гидроаккумулятор или демпфер. Имеет вид герметичного бака с эластичной мембраной и воздушным клапаном. Отвечает сразу за три задачи: накапливает рабочую жидкость, уменьшает давление системы путем забора из нее лишней воды, гасит гидроудары любой мощности.
- Амортизатор – гибкая трубка из каучука или пластика. Ею заменяют часть жесткой трубы перед термостатическим прибором: в случае резкого повышения давления в системе эластичная амортизаторная трубка растягивается и гасит гидроудар без каких-либо негативных последствий для основного трубопровода.
- Шунт – узкая трубка, устанавливаемая в термоклапан. Элемент диаметром не более 0,4 мм монтируется по направлению движения рабочей жидкости. Когда система функционирует без сбоев, шунт никак не дает о себе знать, но как только возникает гидроудар, он плавно уменьшает давление в трубопроводе.
Важно! Шунтирование может использоваться только в новых трубопроводах, выполненных из качественных материалов, так как ржавчина и многолетние осадки старых труб быстро засорят узкую трубку, что сведет ее эффективность к нулю.
Таким образом, гидроудар – опасное явление, которое может спровоцировать серьезные разрушения трубопровода. Чтобы не допустить дисфункции коммуникационных сетей, не пренебрегайте предложенными защитными мерами – они уберегут вас от аварийных ситуаций и непредвиденных затрат.
Амортизатор гидравлического удара: видео
Что такое гидравлический удар? Причины гидравлического удара в трубах
Гидравлический удар в трубопроводах представляет собой возникающий мгновенно скачок давления. Перепад связан с резким изменением в скорости движения водного потока. Далее подробнее узнаем, как возникает гидравлический удар в трубопроводах.
Основное заблуждение
Ошибочно считается гидравлическим ударом результат заполнения жидкостью надпоршневого пространства в двигателе соответствующей конфигурации (поршневом). Вследствие этого поршень не доходит до мертвой точки и начинает сжатие воды. Это, в свою очередь, приводит к поломке двигателя. В частности, к излому штока либо шатуна, обрыву шпилек в головке цилиндра, разрывам прокладок.
Классификация
В соответствии с направлением скачка давления гидравлический удар может быть:
- Положительным. В этом случае повышение давления происходит вследствие резкого включения насоса либо перекрытия трубы.
- Отрицательным. В данном случае речь идет о падении давления в результате открытия заслонки либо выключения насоса.
В соответствии со временем распространения волны и периодом перекрытия задвижки (либо прочей запорной арматуры), в течение которого образовался гидравлический удар в трубах, его разделяют на:
- Прямой (полный).
- Непрямой (неполный).
В первом случае фронт образовавшейся волны двигается в сторону, обратную первоначальному направлению водяного потока. Дальнейшее движение будет зависеть от элементов трубопровода, которые располагаются до закрытой задвижки. Вполне вероятно, что фронт волны пройдет неоднократно прямое и обратное направление. При неполном гидравлическом ударе поток не только может начать двигаться в другую сторону, но и частично пройти далее через задвижку, если она закрыта не до конца.
Последствия
Самым опасным считается положительный гидравлический удар в системе отопления либо водоснабжения. При слишком высоком скачке давления может повредиться магистраль. В частности, на трубах возникают продольные трещины, что приводит впоследствии к расколу, нарушению герметичности в запорной арматуре. Из-за этих сбоев начинает выходить из строя водопроводное оборудование: теплообменники, насосы. В связи с этим гидравлический удар необходимо предотвращать либо снижать его силу. Давление воды становится максимальным в процессе торможения потока при переходе всей кинетической энергии в работу по растяжению стенок магистрали и сжатия столба жидкости.
Исследования
Экспериментально и теоретически изучал явление в 1899 г. Николай Жуковский. Исследователем были выявлены причины гидравлического удара. Явление связано с тем, что в процессе закрытия магистрали, по которой идет поток жидкости, либо при ее быстром закрытии (при присоединении тупикового канала с источником гидравлической энергии), формируется резкое изменение давления и скорости воды. Оно не одновременно по всему трубопроводу. Если в данном случае произвести определенные измерения, то можно выявить, что изменение скорости происходит по направлению и величине, а давления – как в сторону снижения, так и увеличения относительно исходного. Все это означает, что в магистрали имеет место колебательный процесс. Он характеризуется периодическим понижением и повышением давления. Весь этот процесс отличается быстротечностью и обуславливается упругими деформациями самой жидкости и стенок трубы. Жуковским было доказано, что скорость, с которой осуществляется распространение волны, находится в прямой пропорциональной зависимости от сжимаемости воды. Также значение имеет величина деформации стенок трубы. Она определяется модулем упругости материала. Скорость волны зависит и от диаметра трубопровода. Резкий скачок давления не может возникнуть в магистрали, наполненной газом, поскольку он достаточно легко сжимается.
Ход процесса
В автономной системе водяного снабжения, например загородного дома, для создания давления в магистрали может использоваться скважинный насос. Гидравлический удар возникает при внезапном прекращении потребления жидкости – при перекрытии крана. Водяной поток, совершавший движение по магистрали, неспособен останавливаться мгновенно. Столб жидкости по инерции врезается в водопроводный «тупик», который образовался при закрытии крана. От гидравлического удара реле в данном случае не спасает. Оно только лишь реагирует на скачок, отключая насос после того, как будет перекрыт кран, а давление превысит максимальное значение. Выключение, как и остановка водяного потока, не осуществляется мгновенно.
Примеры
Можно рассмотреть трубопровод с постоянным напором и движением жидкости, имеющим постоянный характер, в котором был резко закрыт клапан или внезапно перекрыта задвижка. В скважинной системе водоснабжения, как правило, гидравлический удар возникает в случае, когда обратный затворный элемент располагается выше, чем статический уровень воды (на 9 метров и более), либо имеет утечку, в то время как находящийся выше следующий клапан удерживает давление. И в том, и в другом случае имеет место частичное разряжение. В следующем пуске насоса протекающая с высокой скоростью вода будет заполнять вакуум. Жидкость соударяется с закрытым обратным клапаном и потоком над ним, провоцируя скачок давления. В результате происходит гидроудар. Он способствует не только образованию трещин и разрушению соединений. При возникновении скачка давления повреждается насос или электродвигатель (а иногда и оба элемента сразу). Такое явление может возникнуть в системах объемного гидравлического привода, когда применяется золотниковый распределитель. При перекрытии золотником одного из каналов нагнетания жидкости возникают процессы, описанные выше.
Защита от гидравлических ударов
Сила скачка будет зависеть от скорости потока до и после перекрытия магистрали. Чем интенсивнее движение, тем сильнее удар при внезапной остановке. Скорость самого потока будет зависеть от диаметра магистрали. Чем больше сечение, тем слабее движение жидкости. Из этого можно сделать вывод о том, что использование крупных трубопроводов снижает вероятность гидроудара или ослабляет его. Еще один способ заключается в увеличении продолжительности перекрытия водопровода либо включения насоса. Для осуществления постепенного перекрытия трубы используются запорные элементы вентильного типа. Специально для насосов применяются комплекты по плавному пуску. Они позволяют не только избежать гидроудара в процессе включения, но и существенно увеличивают эксплуатационный срок насоса.
Компенсаторы
Третий вариант защиты предполагает применение демпферного устройства. Оно представляет собой мембранный расширительный бак, который способен «гасить» возникающие скачки давления. Компенсаторы гидравлического удара работают по определенному принципу. Он заключается в том, что в процессе увеличения давления происходит перемещение поршня жидкостью и сжатие упругого элемента (пружины или воздуха). В результате ударный процесс трансформируется в колебательный. Благодаря рассеиванию энергии последний затухает достаточно быстро без существенного повышения давления. Компенсатор применяют в линии наполнения. Его заряжают сжатым воздухом при давлении 0,8-1,0 МПа. Расчет производится приближенно, в соответствии с условиями поглощения энергии движущего столба воды от наполнительного бака или аккумулятора до компенсатора.
39. Гидравлический удар в трубопроводах.
Гидравли́ческий уда́р (гидроудар) — скачок давленияв какой-либо системе, заполненнойжидкостью, вызванный крайне быстрым изменениемскоростипотока этой жидкости за очень малый промежуток времени.
Гидравлический удар способен вызывать образование продольных трещинвтрубах, что может привести к их расколу, или повреждать другие элементытрубопровода. Для предотвращения гидроударов, вызванных резкой переменой направления потока рабочей среды, на трубопроводах устанавливаютсяобратные клапаны.
Явление гидравлического удара открыл в 1897-1899г.Н. Е. Жуковский. Увеличение давления при гидравлическом ударе определяется в соответствии с еготеориейпо формуле:,
где Dp — увеличение давления в Н/м²,ρ — плотностьжидкости вкг/м³,v и v1 — средние скорости в трубопроводе до и после закрытия задвижки(запорного клапана) вм/с,с — скорость распространения ударной волнывдоль трубопровода.
Жуковский доказал, что скорость распространения ударной волны c находится в прямо пропорциональной зависимости от сжимаемости жидкости, величины деформациистенок трубопровода, определяемоймодулем упругостиматериалаE, из которого он выполнен, а также от диаметратрубопровода.
Следовательно, гидравлический удар не может возникнуть в трубопроводе, содержащем газ, так как газ легко сжимаем.
Зависимость между скоростью ударной волны c, её длиной и временем распространения (L и τ соответственно) выражается следующей формулой:
Виды гидравлических ударов
В зависимости от времени распространения ударной волны τ и времени перекрытия задвижки (или другой запорной арматуры)t, в результате которого возник гидроудар, можно выделить 2 вида ударов:
Полный (прямой) гидравлический удар, если t τ
При полном гидроударе фронтвозникшей ударной волны движется в направлении, обратном первоначальному направлению движения жидкости в трубопроводе. Его дальнейшее направление движения зависит от элементов трубопровода, расположенных до закрытой задвижки. Возможно и повторное неоднократное прохождения фронта волны в прямом и обратном направлениях.
При неполном гидроударе фронт ударной волны не только меняет направление своего движения на противоположное, но и частично проходит далее сквозь не до конца закрытую задвижку.
Расчет гидравлического удара
Прямой гидравлический удар бывает тогда когда время закрытия задвижки t3 меньше фазы удара T, определяемой по формуле:
Здесь l — длина трубопровода от места удара до сечения, в котором поддерживается постоянное давление, Cu — скорость распространения ударной волны в трубопроводе, определяется по формуле Н.Е. Жуковского, м/с:
где E — модуль объемной упругости жидкости, p — плотность жидкости, — скорость распространения звука в жидкости,Etr — модуль упругости материала стенок трубы, D — диаметр трубы, h — толщина стенок трубы.
Для воды отношение зависит от материала труб и может быть принято; для стальных — 0.01; чугунных — 0.02; ж/б — 0.1-0.14; асбестоцементных — 0.11; полиэтиленовых — 1-1.45
Коэффициент k для тонкостенных трубопроводов применяется (стальные, чугунные, а/ц, полиэтиленовые) равным 1. Для ж/б
,
коэффициент армирования кольцевой арматурой (f — площадь сечения кольцевой арматуры на 1м длины стенки трубы). Обычно a = 0.015 − 0.05 Повышение давления при прямом гидравлическом ударе определяется по формуле:
где Vo — скорость движения воды в трубопроводе до закрытия задвижки.
Если время закрытия задвижки больше фазы удара (t3>Т), такой удар называется непрямым. В этом случае дополнительное давление может быть определено по формуле:
Результат действия удара выражают также величиной повышения напора H, которая равна:
при прямом ударе
при непрямом
Способы предотвращения возникновения гидравлических ударов
Исходя из формулы Жуковского (определяющей увеличение давления при гидроударе) и величин, от которых зависит скорость распространения ударной волны, для ослабления силы этого явления или его полного предотвращения можно уменьшить скорость движения жидкости в трубопроводе, увеличив его диаметр.
Для ослабления силы этого явления следует увеличивать время закрытия затвора
Установка демпфирующих устройств
Наиболее простым примером возникновения гидравлического удара является пример трубопровода с постоянным напороми установившимся движением жидкости, в котором была резко перекрытазадвижкаили закрытклапан.